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EFFECT OF COMBUSTOR PARAMETERS 
GASEOUS HYDROGEN-LIQUID 

ON THE STABILITY OF 
OXYGEN ENGINE 

by C. E. Fe i le r  

National Aeronautics and Space Administration 
L e w i s  Research Center 

Cleveland, Ohio 

ABSTRACT 

S t a b i l i t y  l i m i t s  from the response f ac to r  model have been obtained f o r  
var ia t ions  i n  chamber pressure, flow rate ,  th roa t  area, and osc i l l a t ion  fre- 
quency f o r  a fixed in j ec to r  element geometry, and a r e  compared with experi- 
mental data. The calculated l i m i t s  were obtained under the  assumption tha t ,  
except f o r  frequency, these var iables  would not a f f ec t  the  nozzle or l i qu id  
oxygen response factors .  The comparison of experiment and analysis  showed 
very good agreement which supports the assumption. For constant operating 
parameters, t he  s t a b i l i t y  l i m i t  defined by the  hydrogen densi ty  a t  t r a n s i t i o n  
exhibited a minimum when plotted against frequency. Thus, a t  a low enough 
hydrogen density,  i n s t a b i l i t y  should no t  occur a t  any frequency, while a t  some 
higher density,  an upper and lower frequency l i m i t  is predicted. 

INTRODUCTION 

The r e s p n s e  f ac to r  model presented i n  reference 1 assumes t h a t  t he  
s t a b i l i t y  of an engine is  controlled by t h e  dynamic coupling t h a t  occurs 
between chamber pressure osc i l l a t ions  and t h e  various combustion o r  flow 
processes. If t h e  t o t a l  coupling produces a large enough in-phase energy 
addition, i n s t a b i l i t y  w i l l  result .  For gaseous hydrogen-liquid oxygen 
engines t h i s  coupling has been evaluated i n  the  form of a r e s p n s e  factor ,  
a measure of in-phase energy addition, f o r  th ree  processes. 
a r e  the  response o f  the  hydrogen flow (ref. 1) t h e  response of v a p r i z i n g  
l iqu id  oxygen drops ( r e f .  2 ) ,  and t h e  response of t he  nozzle flow (ref. 1). 

These processes 

The present extension o f  t h i s  model was suggested by the  data  of 
reference 3. These data show t h e  e f fec t  of t o t a l  flow ra t e ,  chamber pressure, 
and nozzle th roa t  area on hydrogen t r ans i t i on  temperature or density. 
l y t i c a l  resul ts  of  t h e  present study are compared with t h e  experimental data. 
Analytical  r e s u l t s  o f  t he  e f f ec t  o f  frequency on hydrogen t r ans i t i on  densi ty  
were a l s o  obtained although no experimental data were avai lable  for comparison. 
Such frequency e f f e c t s  could be produced experimentally by changing t h e  chamber 
diameter. 
elements and the  th roa t  area, t he  engine t h r u s t  would be increased. 

Ana- 

If t h i s  were done while a lso increasing the  number of  in jec tor  

ANALYTICAL MODEL 

The s t a b i l i t y  c r i t e r ion  assumed i n  reference 1 w a s  
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where N ' s  a r e  t h e  response fac tors  f o r  the  various processes considered. 
The r e s p n s e  fac tors  a re  weighted by the f r ac t ion  of the  t o t a l  flow, WiPt 
enter ing in to  the  par t icu lar  process, i. 

, In  general, i f  the  chamber pressure and flow r a t e  perturbations, P& 
and W', a re  given nondimensionally by 

W' = Wkax s i n  (ut  + e )  
where u is angular frequency, t i s  time and 8 i s  a phase angle 

then 

(3) 

(4) 

Equations f o r  Nlox were derived i n  reference 2. Figure 1 shows Nlo 
p lot ted against  dimensionless time. A s  shown, the value of Nlox peaks a% 
a par t icu lar  frequency and then decreases t o  negative values a s  frequency 
i s  increased fur ther .  w a s  treated 
as constant a t  a value o f  0.55, t he  peak value obtained by %!near analysis.  

For t h e  r e s u l t s  presented herein, N1 

The nozzle r e s p n s e  fac tor  w a s  derived i n  reference 1, which t rea ted  
the  nozzle as a r e s i s t i v e  f l o w  device. The value of Nnoz w a s  0.833. 

Figure 2 shows a sketch o f  an in jec tor  element and the  equations 
enter ing in to  the  lumped element treatment of the  hydrogen flow. 
shows t h e  r e su l t i ng  equations defining  NE^ from reference 1 t h a t  were solved 
f o r  various values of the  chamber pressure, flow ra t e ,  and frequency. 

Figure 3 

RESULTS AND DISCUSSION 

The hydrogen r e s p n s e  f ac to r  i s  plotted against  hydrogen in jec t ion  dens i ty  
i n  figure 4 fo r  severa l  f low rate-chamber pressure combinations. These curves 
are f o r  a mixture r a t i o  of 5.5 and an osc i l l a t ion  frequency of 3400 cycles per 
second. 
seconds. For t h e  present data, a s l i g h t l y  b e t t e r  f i t  w a s  obtained by changing 
Tb t o  0.00008 seconds. 
(temperature decreased) t h a t  t h e  response f ac to r  curves a l so  increase. The 
rate o f  increase i s  more rapid for  lower flow rates. 
f o r  t he  lower chamber pressures. 

In  reference 1, zb determined by f i t t i n g  one s e t  of data w a s  0.00009 

It can be seen t h a t  as  hydrogen densi ty  is increased 

A similar e f f ec t  occurs 

The value of N H ~  needed t o  s a t i s f y  the  s t a b i l i t y  c r i t e r ion  (equation 1) 
fo r  t he  values of N l o x  and Nnoz previously given is  2.39 a t  a mixture r a t i o  
of 5.5. 
for  given conditions. Figures 5, 6, and 7 show the  var ia t ion o f  hydrogen 
t r a n s i t i o n  densi ty  so  obtained against  flow r a t e  (varying nozzle area) a t  
constant chamber pressure, flow r a t e  (varying chamber pressure) a t  constant 
t h roa t  area,  and chamber pressure (varying nozzle area and flow rate) respec- 
t ive ly .  
from reference 3 t h a t  were obtained under conditions nominally equivalent t o  
those used f o r  calculat ing the  ana ly t ica l  curves. The predominant e f f ec t  among 
t h e  three var iables  was associated with flow rate. Thus, i n  f igure  7, severa l  
flow rates, corresponding t o  the  experimental data were needed t o  r e l a t e  t h e  

From f igure 4 the  densi ty  correspnding t o  t h i s  value can be obtained 

Also shown on figures 5, 6, and 7 a re  experimental t r ans i t i on  dens i t i e s  
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analysis  and experiment. 
about 250 psi ,  t r ans i t i on  density is seen t o  be almost invariant  with chamber 
pressure. 

Over a broad range of chamber pressures, exceeding 

The agreement between experiment and theory as shown by the  figures w a s  
qu i te  good. 
the  oxygen response as invariant  over the range o f  parameters experimentally 
studied. I n  general, it might have been expected t h a t  over t h i s  range, a 
var ia t ion  of t he  oxygen response factor  would have been necessary; however 
it w a s  not. 
f ac to r  and more par t icular ly ,  with t h e  res i s tance  terms i n  t h e  response f ac to r  
represented by the  hydrogen in jec t ion  pressure drop. 
drop becomes small enough, the  hydrogen flow couples with and drives the  cham- 
be r  pressure osc i l la t ions .  Since figures 5 and 6 show an almost l i nea r  varia- 
t i o n  o f  hydrogen t r ans i t i on  density with flow rate and s ince hydrogen in jec t ion  
area w a s  constant, t h e  t r ans i t i on  boundary is  approximately represented by a 
constant hydrogen in jec t ion  ve loc i ty  as opposed t o  a constant hydrogen-oxygen 
ve loc i ty  r a t i o .  This r e s u l t  suggests t ha t  t h e  e f f e c t  of t he  oxygen system on 
s t a b i l i t y  should be re la ted  t o  t h e  oxygen in j ec to r  geometry and espec ia l ly  
oxygen j e t  diameter as w a s  p ropsed  i n  reference 4, as an a l t e rna t ive  t o  
oxygen in jec t ion  velocity.  

It is in te res t ing  t h a t  t h i s  correlat ion was obtained by t r e a t i n g  

The behavior observed i s  thus associated with the  hydrogen response 

Thus, when t h e  pressure 

The e f f ec t  of o sc i l l a t ion  frequency on hydrogen t r a n s i t i o n  densi ty  i s  
shown i n  f igure  8 f o r  a f ixed in j ec to r  element and combustor conditions. 
Curves a r e  shown with the  oxygen r e s p n s e  f ac to r  e i t h e r  constant or varying 
with frequency. The small difference is due t o  the  small var ia t ion  t h a t  occurs 
i n  t h e  oxygen r e s p n s e  fac tor  over t h i s  frequency range. 
the  curves is associated with t h e  hydrogen r e s p n s e  factor.  
t he  model predicts  a hydrogen density below which s t a b i l i t y  always occurs. 
A t  higher dens i t i e s  there  are lower and upper frequency l i m i t s .  

The primary shape o f  
It i s  seen t h a t  

A t  any densi ty  above the  lower l i m i t  t he  curves might predict  s t a b l e  
operation f o r  t he  fundamental chamber frequency bu t  predict  t h a t  i n s t a b i l i t y  
should occur a t  some harmnic  frequency. Thus, f o r  t he  experimental data  
discussed, t h e  fundamental frequency for  the  tangent ia l  mode was 3400 cps 
and f o r  t h i s  frequency and the  conditions shown i n  f igure  8 a t r a n s i t i o n  
densi ty  of  0.505 pounds per cubic foot  w a s  predicted. 
b i l i t y  i n  the  second transverse mode (5640 cps) would have been expected a t  a 
densi ty  of about 0.3 punds  per cubic foot. The second tangent ia l  mode has 
not been r e p r t e d  i n  these experiments so it apparently has not occurred a t  
high amplitudes. I n s t a b i l i t y  i n  higher harmonic modes has been observed i n  
engines such as t h e  M-1, however. 

From f igure  8, ins ta -  

CONCLUDING REMARKS 

The form of the  r e s p n s e  f ac to r  model given i n  equation 1 is  general  
i n  nature. 
t he re  is  no reason other processes could not be included i n  the  model. 
f o r  example, a term representing the  e f fec t  of an acoustic l i n e r  could readi ly  
be added. The b a r r i e r  t o  such addition l i e s  i n  formulating the  r e s p n s e  fac tor  
f o r  t he  pa r t i cu la r  process involved. 
sen ta t ions  of the  atomization and mixing processes and others. 

Although only three  processes have been considered a t  present, 
Thus, 

A complete model might a l so  include repre- 



4 

The model could a l s o  be adapted, in  principle,  t o  any propellant com- 
t 

bination, provided t h a t  the  processes controll ing i t s  combustion were known. 
Thus, t h e  model f o r  heptane-liquid oxygen propellants might consis t  o f  
r e s p n s e  fac tors  f o r  t he  v a p r i z a t i o n  3f each propellant and for  t h e  nozzle. 

SUMMARY OF RESULTS 

The r e s p n s e  fac tor  made1 f o r  predicting gaseous hydrogen-liquid oxygen 
engine s t a b i l i t y  has been extended t o  show t h e  e f f ec t s  o f  combustor parameters 
and o s c i l l a t i o n  frequency. The resu l t s  are: --.- 

1. I n s t a b i l i t y  associated w i t h  changing f l o w  rate or chamber pressure 
f o r  f ixed in j ec to r  element geometry w a s  re la ted  t o  the  r e s p n s e  o f  
the  hydrogen flow system. Agreement between experiment and analysis  
was good when compared under the assumption t h a t  only the  hydrogen 
flow system r e s p n s e  w a s  a variable. 

2. For the  oxygen system, oxygen in j ec to r  configuration ( j e t  diameter) 
ra ther  than oxygen in jec t ion  veloci ty  appears t o  have the  chief 
influence on s t a b i l i t y .  
primary parameter fo r  influencing the  oxygen r e s p n s e  fac tor .  

Oxygen j e t  diameter appears t o  be t h e  

3. Frequency analysis  showed the existence o f  an upper and lower 
frequency l i m i t  a t  higher hydrogen in jec t ion  dens i t ies .  A t  suf- 
f i c i e n t l y  low densi t ies ,  s t a b i l i t y  was predicted a t  a l l  frequencies. 

4. The frequency analysis  a l so  predicts harmonic i n s t a b i l i t y  i n  some 
cases where fundamental mode i n s t a b i l i t y  could not occur. 
behavior has been observed i n  l a rger  engines. 

Such 

SYMBOLS 

A 

C 

I 

N 

. O/F 

P 

pl 
P 

2 
S 

cross-sectional area 

capacitance,, FvlrTi 

gravi ta t iona l  constant 

inductance, F( L / A ~ )  /gFZ 

response f ac to r  

oxidant-fuel mixture r a t i o  

pressure 

hydrogen dome pressure 

annulus entrance pressure 

o r i f i c e  entrance pressure 

Laplace operator 
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t time 

5 

V dome volume 

W flow rate 

y spec i f ic  heat r a t i o  

8 phase angle 

p hydrogen density 

T 

‘t drop v a p r i z a t i o n  time 

o angular frequency 

subs c r  i p t  s 

lox l iqu id  oxygen 

max 

noz nozzle 

1 hydrogen annulus 

2 hydrogen o r i f  i ce  

b burned hydrogen gases 

C chamber 

T nozzle th roa t  

t t o t a l  

superscr ipts  

- average value 

t perturbation quantity,  (x-X) /T 

time delay constant for hydrogen r e s p n s e  b 

v 

peak amplitude of s ine  wave 

- c  
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Figure 1. - Oxygen response factor. 

. 

TjV 

I YW 
/-CAPACITANCE: : S P b  = - W '  

/ 

Y ' I f  -_--- INDUCTANCE: P i  - P i  =Y S W' 
p2 

---RESISTANCE: W'  

--CAPACITANCE: wb = w 1e-'bs 

CS-41106 

Figure 2. - Hydrogen model. 
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Figure 4. - Effect of flow rate and chamber pressure on response 
factor-density characteristics. 



. 
I 

H Y D R O G E N  
T R A N S I T I O N  

D E N S I T Y ,  
L B / F T 3  

H Y D R O G E N  
T R A N S  I T I O N  

D E N S I T Y ,  
L B I F T 3  

O I F  - 5 . 5  U N S T A B L E  ~ 

P c  - 3 0 0  PSI 

N O Z Z L E  A R E A  --+ I 
2 0  3 0  40 5 0  6 0  70 80  9 0  

Figure 5. - Effect of flow rate on hydrogen transi t ion density at constant chamber 
T O T A L  F L O W  R A T E ,  L B l S E C  CS-44323 

pressure. 

O I F  - 5 . 5  U N S T A B L E  
A c / A ~  - 1 . 9  

C H A M B E R  P R E S S U R E  - 
2 0  30 40 5 0  6 0  70 80 9 0  

Figure 6. - Effect of flow rate on hydrogen transi t ion density at constant con- 
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traction ratio. 
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